40 research outputs found

    Spectrum Occupancy Measurement: An Autocorrelation based Scanning Technique using USRP

    Full text link
    This paper presents a technique for scanning and evaluating the radio spectrum use. This technique determines the average occupancy of a channel over a specific duration. The technique was implemented using Software Defined Radio units and GNU Radio software. The survey was conducted in Grand Forks, North Dakota, over a frequency range of 824 MHz to 5.8 GHz. The results of this technique were compared to those of two existing techniques, energy detection and autocorrelation, that were also implemented. The results show that the proposed technique is more efficient at scanning the radio spectrum than the other two techniques.Comment: 5 pages, IEEE Wireless and Microwave Technology Conference (WAMICON), 201

    A Bayesian Network Model of the Bit Error Rate for Cognitive Radio Networks

    Full text link
    In addition to serve as platforms for dynamic spectrum access, cognitive radios can also serve as a method for improving the performance of wireless communication systems by smartly adjusting their operating parameters according to the environment and requirements. The uncertainty always present in the environment makes the practical implementation of the latter application difficult. In this paper, we propose a probabilistic graphical model, Bayesian network that captures the causal relationships among the variables bit energy to noise spectral density ratio (EbN0), carrier to interference ratio (C/I), modulation scheme (MOD), Doppler phase shift (Dop_Phi), and bit error rate (BER). BER indicates how the communication link is performing. The goal of our proposed Bayesian network is to use the BER as evidence in order to infer the behavior of the other variables, so the cognitive radio can learn how the conditions of the environment are, and based on that knowledge make better informed decisions. This model along with the method used to build it are described in this paper.Comment: 4 pages, IEEE Wireless and Microwave Technology Conference (WAMICON), 201

    Noise Cancellation in Cognitive Radio Systems: A Performance Comparison of Evolutionary Algorithms

    Full text link
    Noise cancellation is one of the important signal processing functions of any communication system, as noise affects data integrity. In existing systems, traditional filters are used to cancel the noise from the received signals. These filters use fixed hardware which is capable of filtering specific frequency or a range of frequencies. However, next generation communication technologies, such as cognitive radio, will require the use of adaptive filters that can dynamically reconfigure their filtering parameters for any frequency. To this end, a few noise cancellation techniques have been proposed, including least mean squares (LMS) and its variants. However, these algorithms are susceptible to non-linear noise and fail to locate the global optimum solution for de-noising. In this paper, we investigate the efficiency of two global search optimization based algorithms, genetic algorithm and particle swarm optimization in performing noise cancellation in cognitive radio systems. These algorithms are implemented and their performances are compared to that of LMS using bit error rate and mean square error as performance evaluation metrics. Simulations are performed with additive white Gaussian noise and random nonlinear noise. Results indicate that GA and PSO perform better than LMS for the case of AWGN corrupted signal but for non-linear random noise PSO outperforms the other two algorithms

    Primary User Emulation Attacks: A Detection Technique Based on Kalman Filter

    Full text link
    Cognitive radio technology addresses the problem of spectrum scarcity by allowing secondary users to use the vacant spectrum bands without causing interference to the primary users. However, several attacks could disturb the normal functioning of the cognitive radio network. Primary user emulation attacks are one of the most severe attacks in which a malicious user emulates the primary user signal characteristics to either prevent other legitimate secondary users from accessing the idle channels or causing harmful interference to the primary users. There are several proposed approaches to detect the primary user emulation attackers. However, most of these techniques assume that the primary user location is fixed, which does not make them valid when the primary user is mobile. In this paper, we propose a new approach based on the Kalman filter framework for detecting the primary user emulation attacks with a non-stationary primary user. Several experiments have been conducted and the advantages of the proposed approach are demonstrated through the simulation results.Comment: 14 pages, 9 figure
    corecore